Current Trends in Athletic Training Practice for Concussion Assessment and Management

Andrew J. Notebaert; Kevin M. Guskiewicz

The University of North Carolina at Chapel Hill, Chapel Hill, NC

Andrew J. Notebaert, MS, ATC, and Kevin M. Guskiewicz, PhD, ATC, contributed to conception and design; acquisition and analysis and interpretation of the data; and drafting, critical revision, and final approval of the article.

Address correspondence to Kevin M. Guskiewicz, PhD, ATC, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Fetzer Gym CB#8700, Chapel Hill, NC 27599. Address e-mail to gus@email.unc.edu.

Context: Athletic trainers surveyed in 1999 demonstrated little consensus on the use of concussion grading scales and return-to-play criteria. Most relied on clinical examination or symptom checklists to evaluate athletes with concussion.

Objective: To investigate the current trends of certified athletic trainers in concussion assessment and management.

Design: Subjects were invited to participate in a 32-question Internet survey.

Setting: An Internet link to the survey was e-mailed to the subjects.

Patients or Other Participants: A total of 2750 certified athletic trainers and members of the National Athletic Trainers’ Association were randomly e-mailed and invited to participate.

Main Outcome Measure(s): Survey questions addressed topics including years of certification, number of concussions evaluated each year, methods of assessing concussion, and guidelines used for return to play. Compliance with the recent position statement of the National Athletic Trainers’ Association on sport-related concussion was also evaluated.

Results: Certified athletic trainers averaged 9.9 ± 7.3 years of certification and evaluated an average of 8.2 ± 6.5 concussions per year. To assess concussion, 95% reported using the clinical examination, 85% used symptom checklists, 48% used the Standardized Assessment of Concussion, 18% used neuropsychological testing, and 16% used the Balance Error Scoring System. The most frequently used concussion grading scale and return-to-play guideline belonged to the American Academy of Neurology (30%). When deciding whether to return an athlete to play, certified athletic trainers most often used the clinical examination (95%), return-to-play guidelines (88%), symptom checklists (80%), and player self-report (62%). The most important tools for making a return-to-play decision were the clinical examination (59%), symptom checklists (13%), and return-to-play guidelines (12%). Only 3% of certified athletic trainers surveyed complied with the recent position statement, which advocated using symptom checklists, neuropsychological testing, and balance testing for managing sport-related concussion.

Conclusions: Our findings suggest that only a small percentage of certified athletic trainers currently follow the guidelines proposed by the National Athletic Trainers’ Association. Various assessment methods and tools are currently being used, but clinicians must continue to implement a combination of methods and tools in order to comply with the position statement.

Key Words: mild traumatic brain injury, mild brain injury, evaluation

Sports medicine clinicians and researchers have access to a variety of tools for evaluating and rehabilitating athletic injuries. These tools, for the most part, offer clinicians information about the presence and severity of injury. Additionally, they may suggest a timeframe for rehabilitation and return to play. However, this is not the case with sport-related concussion. No simple tests can be performed on the brain to determine the severity of a closed head injury and help clinicians establish goals for rehabilitation and return to play. The complexity of concussion injuries requires clinicians to use a variety of tools for information, but the current tendency is to base the return-to-play decision on the athlete’s self-reporting of symptoms and ability to perform sport-specific tasks without a recurrence of concussion symptoms.1–4 Relying solely on this information can be dangerous because it creates an incomplete picture of the injury.

A multifaceted protocol has been proposed by several authors in the literature.1,2,5–9 The recent position statement of the National Athletic Trainers’ Association (NATA) recommends the use of symptom checklists, neuropsychological testing, and postural stability assessment.5 Baseline testing on these measures is important for athletes participating in sports with a high concussion risk; however, if resources allow, all athletes should receive baseline assessment. Follow-up testing should be conducted to aid in the decision process for return to play. Using all the available information may be the best approach to safely returning an athlete to play after a concussion.

Research on sport-related concussion has increased tremendously in the modern era. A literature search on PubMed revealed large increases in the amount of published material in scientific journals each decade since the 1960s (Table 1). This increase in research has expanded the information available to certified athletic trainers (ATCs) and led to a greater understanding of sport-related concussion. However, the literature has also raised more questions and...
forced clinicians to rethink their approach to concussion management.

Our study is based on a survey similar to one administered at the 1999 NATA Annual Meeting and Clinical Symposia. The authors analyzed trends in concussion assessment and management by ATCs. Little consensus was found on concussion grading scales and return-to-play criteria, and most ATCs relied on clinical examination or symptom checklists as evaluative tools for concussion assessment. The ATCs evaluated an average of 7 concussions per year and, along with team physicians, were primarily responsible for making return-to-play decisions. The majority of ATCs also indicated that standardized methods of concussion assessment (SMCA) would help provide more information for concussion management.

In recent years, several journal special issues and position statements have been devoted solely to concussion in sport. Given the increase in published research findings in recent years, our purposes were to (1) investigate and update the current trends in athletic training practice for concussion assessment and management, (2) determine whether the trends have changed over the past 5 years, and (3) evaluate whether ATCs were compliant with the recent NATA position statement on sport-related concussion.

METHODS

A list of approximately 2750 ATCs was randomly generated from all regular certified members of the NATA. These members were contacted by e-mail, which included a link to the survey. The ATCs agreeing to participate in this study took approximately 20 minutes to complete the survey. The Academic Affairs Institutional Review Board approved the survey, and consent to participate in the study was implied by the subjects’ submission of the online survey.

We adapted a 32-question survey (Table 2) from a 21-item survey used by Ferrara et al. Our intent was to evaluate the clinical practice habits and decision-making skills of ATCs in relation to sport concussion. The survey first gathered demographic data, the number of years certified, employment position and setting, and the sports covered by the clinician. It

Table 1. Number of Published Materials on Concussion in Sport in PubMed

<table>
<thead>
<tr>
<th>Decade</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960–1969</td>
<td>5</td>
</tr>
<tr>
<td>1970–1979</td>
<td>23</td>
</tr>
<tr>
<td>1980–1989</td>
<td>34</td>
</tr>
<tr>
<td>1990–1999</td>
<td>143</td>
</tr>
<tr>
<td>2000–2004</td>
<td>172</td>
</tr>
</tbody>
</table>

*Search terms were concussion, mild head injury, mild traumatic brain injury, and sport.

Table 2. Sample Questions from Athletic Trainer Concussion Questionnaire—2004

- Indicate your current primary position:
 - Clinical
 - Academic
 - Research
 - Administrative
 - Student
 - Other

- Indicate your current primary employment/position setting:
 - College athletics
 - Professional athletics
 - High school athletics
 - Sports medicine clinic
 - General hospital setting
 - Academic department
 - Fitness center
 - Personal trainer
 - Corporate health

- What methods do you typically utilize to assess and diagnose concussion? (check all that apply)
 - Clinical examination
 - Symptom checklists
 - Balance Error Scoring System (BESS)
 - Concussion grading scales
 - Player self-report
 - Standardized Assessment of Concussion (SAC)
 - Neuropsychological testing (computerized)
 - Other (specify)

- What methods do you typically utilize to make decisions about return to play after concussion? (check all that apply)
 - Clinical examination
 - Physician recommendations
 - Neuropsychological testing (computerized)
 - Neuropsychological testing (traditional)
 - Balance Error Scoring System (BESS)
 - Head CT/brain MRI
 - Concussion grading scales
 - Return-to-play guidelines
 - Symptom checklist
 - Player self-report
 - Standardized Assessment of Concussion (SAC)
 - Other (specify)

- What is the single method you rely on the most in making decisions about return to play after concussion? (select one)
 - Clinical examination
 - Physician recommendations
 - Neuropsychological testing (computerized)
 - Neuropsychological testing (traditional)
 - Balance Error Scoring System (BESS)
 - Head CT/brain MRI
 - Concussion grading scales
 - Return-to-play guidelines
 - Symptom checklist
 - Player self-report
 - Standardized Assessment of Concussion (SAC)
 - Other (specify)

Please answer the following questions on the following scenario: Your athlete had no loss of consciousness but had posttraumatic amnesia for <1 minute. Your evaluation the next day found:

- Your clinical examination revealed abnormalities but the player appeared normal on standardized methods of concussion assessment (eg, SAC, BESS, neuropsychological testing). Would you return this player to competition?
 - Yes
 - No

- A player was reporting postconcussion symptoms but appeared normal on standardized methods of concussion (eg, SAC, BESS, neuropsychological testing). Would you return this player to competition?
 - Yes
 - No
SurveyMonkey.com. Questions were grouped in blocks of 3 and evaluated using standard methods. Questions asked clinicians what methods described in the literature that are objective in nature poses for the maximum number of concussions (less than 25% of the total) that involved loss of consciousness, retrograde amnesia, or posttraumatic amnesia (Table 4). Of the ATCs who had evaluated cases involuntarily, whereas 13.1% (101/769) used some combination of their primary return-to-play guidelines. The Colorado Medical Society15 and the 2001 Cantu evidence-based 3 guidelines followed, with 20.7% (159/769) and 19.9% (153/769), respectively, whereas 13.1% (101/769) used some combination of guidelines or a site-specific guideline, and 8.6% (66/769) reported not using any return-to-play guidelines. The average number of concussions diagnosed per year was 8.2 ± 6.5 (Table 3). Only 20% of ATCs reported evaluating more than 10 concussions per year, with more than 50% of those being in the high school setting.

More than 80% of ATCs surveyed reported evaluating relatively few concussions (less than 25% of the total) that involved loss of consciousness, retrograde amnesia, or posttraumatic amnesia (Table 4). Of the ATCs who had evaluated cases of postconcussion syndrome, approximately 68% (465/686) said a physician had diagnosed the condition. Respondents reported using a variety of methods to assess and evaluate concussion and make return-to-play decisions. The clinical examination and symptom checklists are used consistently for concussion evaluation (>85% of the time) among ATCs (Figure 1). Clinical examinations, physician recommendations, return-to-play guidelines, and symptom checklists are the most common return-to-play methods used (≥80%

Table 3. Concussions Evaluated Per Year by Athletic Trainers’ Primary Employment Settings (Number, Percentage)

<table>
<thead>
<tr>
<th>Number of Concussions Evaluated</th>
<th>Professional Setting (n = 837)</th>
<th>College (n = 832)</th>
<th>High School (n = 829)</th>
<th>Sports Medicine Clinic (n = 822)</th>
<th>Other (n = 832)</th>
<th>Total (n = 849)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>10 (40.00)</td>
<td>9 (26.50)</td>
<td>8 (21.70)</td>
<td>13 (25.90)</td>
<td>12 (24.50)</td>
<td>120 (14.18)</td>
</tr>
<tr>
<td>3 to 5</td>
<td>5 (20.00)</td>
<td>103 (33.88)</td>
<td>77 (25.00)</td>
<td>32 (32.67)</td>
<td>35 (29.41)</td>
<td>253 (29.91)</td>
</tr>
<tr>
<td>6 to 10</td>
<td>8 (32.00)</td>
<td>109 (35.86)</td>
<td>129 (41.88)</td>
<td>31 (30.69)</td>
<td>25 (23.15)</td>
<td>302 (35.70)</td>
</tr>
<tr>
<td>More than 10</td>
<td>2 (8.00)</td>
<td>54 (17.67)</td>
<td>93 (30.19)</td>
<td>15 (14.85)</td>
<td>7 (6.48)</td>
<td>171 (20.21)</td>
</tr>
</tbody>
</table>

Table 4. Athletic Trainers’ Witnessing of Selected Concussion Symptoms (Number, Percentage)

<table>
<thead>
<tr>
<th>Evaluated Percentage of Concusions</th>
<th>Loss of Consciousness (n = 837)</th>
<th>Retrograde Amnesia (n = 832)</th>
<th>Post-traumatic Amnesia (n = 829)</th>
<th>Post-concussion Syndrome (n = 822)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>2 (0.24)</td>
<td>3 (0.36)</td>
<td>2 (0.24)</td>
<td>9 (1.09)</td>
</tr>
<tr>
<td>75–99%</td>
<td>1 (0.12)</td>
<td>9 (1.08)</td>
<td>9 (1.09)</td>
<td>26 (3.16)</td>
</tr>
<tr>
<td>50–74%</td>
<td>13 (1.55)</td>
<td>41 (4.93)</td>
<td>32 (3.86)</td>
<td>43 (5.23)</td>
</tr>
<tr>
<td>25–49%</td>
<td>19 (2.27)</td>
<td>88 (10.58)</td>
<td>53 (6.39)</td>
<td>42 (5.11)</td>
</tr>
<tr>
<td>10–24%</td>
<td>80 (9.56)</td>
<td>177 (21.27)</td>
<td>140 (16.89)</td>
<td>110 (13.38)</td>
</tr>
<tr>
<td>1–9%</td>
<td>442 (52.81)</td>
<td>356 (42.79)</td>
<td>328 (39.57)</td>
<td>321 (39.05)</td>
</tr>
<tr>
<td>0%</td>
<td>280 (33.45)</td>
<td>158 (18.99)</td>
<td>265 (31.97)</td>
<td>271 (32.97)</td>
</tr>
</tbody>
</table>

Figure 1. Frequency of methods used to evaluate and diagnose concussion. Subjects were asked to check all that apply.

RESULTS

A total of 927 ATCs responded to the 2750 e-mails sent out, for a response rate of 33.7%. Surveyed ATCs averaged 9.94 ± 7.3 years of certification. All respondents were current ATCs except for 1 who had recently retired. More than 85% (n = 767/879 [86.78%]) reported being licensed if their state had athletic trainer licensure available. More than half (568/926 [61.34%]) of those surveyed had earned a master’s degree or PhD.

The most common responses for primary employment position were the high school (323/911 [35.46%]), collegiate (314/911 [34.47%]), and sports medicine (109/911 [11.94%]) clinical settings. Subjects were most often responsible for covering women’s basketball, men’s basketball, football, baseball, and women’s soccer. More than 30% (232/769) reported using the American Academy of Neurology recommendations, return-to-play guidelines, and symptom checklists. The Colorado Medical Society15 and the 2001 Cantu evidence-based guidelines followed, with 20.7% (159/769) and 19.9% (153/769), respectively, whereas 13.1% (101/769) used some combination of guidelines or a site-specific guideline, and 8.6% (66/769) reported not using any return-to-play guidelines.

The average number of concussions diagnosed per year was 8.2 ± 6.5 (Table 3). Only 20% of ATCs reported evaluating more than 10 concussions per year, with more than 50% of those being in the high school setting.

More than 80% of ATCs surveyed reported evaluating relatively few concussions (less than 25% of the total) that involved loss of consciousness, retrograde amnesia, or posttraumatic amnesia (Table 4). Of the ATCs who had evaluated cases of postconcussion syndrome, approximately 68% (465/686) said a physician had diagnosed the condition. Respondents reported using a variety of methods to assess and evaluate concussion and make return-to-play decisions. The clinical examination and symptom checklists are used consistently for concussion evaluation (>85% of the time) among ATCs (Figure 1). Clinical examinations, physician recommendations, return-to-play guidelines, and symptom checklists are the most common return-to-play methods used (≥80%
Figure 2. Frequency of methods used to guide return-to-play decisions. Subjects were asked to check all that apply.

Figure 3. Frequency of primary method/tools used to guide return-to-play decisions. Subjects were asked to select the primary method guiding return-to-play decisions.

Table 5. Caregivers Responsible for Making Return-to-Play Decisions (Number, Percentage)*

<table>
<thead>
<tr>
<th>Caregiver</th>
<th>1st Caregiver (n = 814)</th>
<th>2nd Caregiver (n = 805)</th>
<th>3rd Caregiver (n = 716)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athletic trainer</td>
<td>212 (26.04)</td>
<td>461 (57.27)</td>
<td>126 (17.60)</td>
</tr>
<tr>
<td>Team physician</td>
<td>422 (51.84)</td>
<td>165 (20.50)</td>
<td>45 (6.28)</td>
</tr>
<tr>
<td>Primary care physician</td>
<td>169 (20.76)</td>
<td>136 (16.69)</td>
<td>164 (22.91)</td>
</tr>
<tr>
<td>Coach</td>
<td>0 (0.00)</td>
<td>11 (1.37)</td>
<td>74 (10.20)</td>
</tr>
<tr>
<td>Player</td>
<td>1 (0.12)</td>
<td>9 (1.12)</td>
<td>136 (18.99)</td>
</tr>
<tr>
<td>Parents</td>
<td>2 (0.25)</td>
<td>17 (2.11)</td>
<td>134 (18.72)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (0.98)</td>
<td>6 (0.75)</td>
<td>38 (5.31)</td>
</tr>
</tbody>
</table>

*Subjects were asked to indicate who was most responsible (1st), followed by the next most important (2nd and 3rd) in making return-to-play decisions.

Table 6. Athletic Trainers’ Return-to-Play Decisions Based on Hypothetical Situations

<table>
<thead>
<tr>
<th>Clinical Findings</th>
<th>Standard Methods of Concussion Assessment</th>
<th>Return-to-Play Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical examination abnormal</td>
<td>Normal</td>
<td>Yes 770</td>
</tr>
<tr>
<td>Postconcussion symptoms present</td>
<td>Normal</td>
<td>Yes 783</td>
</tr>
<tr>
<td>Clinical examination normal, no symptoms</td>
<td>Abnormal</td>
<td>Yes 678</td>
</tr>
</tbody>
</table>

Almost 68% (518/762) reported that using SMCA would be more helpful than relying on the clinical examination alone. Just over 32% (244/762) stated that using SMCA would not add anything to the clinical examination. Thirty-five percent (266/752) stated that SMCA would have no effect on the return-to-play decisions, whereas 17.0% (128/752) declared that an athlete would likely return sooner if SMCA were used. Almost 48% (358/752) reported that, in their opinion, SMCA would prolong the amount of time an athlete would remain out of competition after a concussion. More than 62% (470/758) did not believe that SMCA could be misused to return an athlete to play sooner than usual.

Subjects were asked about a scenario in which an athlete sustained a mild head injury and had no loss of consciousness but posttraumatic amnesia for less than 1 minute. Three sets of hypothetical findings on follow-up examination were given and the ATCs asked if they would return the athlete to play (Table 6). Approximately 15% reported that they would return an athlete to play if the only abnormal findings were noted on SMCA.

Of the ATCs surveyed, 135 reported using computerized neuropsychological testing. Seventy-five percent (100/135) used ImPACT (University of Pittsburgh Medical Center, Pittsburgh, PA) as their primary computerized neuropsychological test. Almost 10% (13/135) used ANAM (National Rehabilitation Hospital Assistive Technology and Neuroscience Center, Washington, DC), 4.5% (6/135) used CogState (CogState Ltd, Victoria, Australia), and 4.5% (6/135) used HeadMinder (HeadMinder Inc, New York, NY). Just over 25% (193/767) reported having access to a neuropsychologist for consultation after a concussion, but only about one fourth of those (48/198) said they routinely consult the neuropsychologist. Seventy-eight percent (593/757) stated that athletic trainers should be trained to administer neuropsychological tests to assess concussion.

Chi-square tests of association were performed to assess trends between the number of years certified and the clinical tools used, the number of years certified and the primary position, the primary position and the clinical tools used, and the employment setting and the clinical tools used. A significant relationship was found between ATCs with more years of certification and increased use of computerized neuropsychological testing ($\chi^2 = 14.12, P = .007$). High school ATCs more frequently used symptom checklists ($\chi^2 = 14.11, P = .007$), and college and professional ATCs more frequently used computerized neuropsycho-
berich et al18 reported that 20% of high school football players
demise has primarily been reported in football. In 1983, Ger-
counsels,13 5% used the BESS, 9 and 15% used neuropsychologi-
critical testing. These results help to describe the current
trends in concussion management when compared with the
findings of Ferrara et al10 that 33% used the clinical ex-
amination, 35% used symptom checklists, 10% used the
psychological testing. With the reported increases in the use of these
methods and tools, it seems that ATCs are now in better po-
tion to assess and manage concussions.

The suggestion that more concussions are occurring in sport,
however, has not yet been substantiated, primarily because of the
challenges faced in collecting both exposure and injury
data. The Centers for Disease Control and Prevention esti-
ated 300,000 sport-related concussions annually in the Unit-
States.16 The actual incidence per exposure to concussion
is unclear. A discrepancy appears to exist between the current expec-
tations that clinicians should regularly use SMCA and what
occurs on the playing fields and in athletic training rooms
across America. A smaller percentage of respondents in this
study (68%) than in the previous study (86%)10 reported that
using SMCA would be more effective than using the clinical
examination alone. In both studies, ATCs reported (47% in
both) that using SMCA would prolong the amount of time an
athlete would be withheld from competition. Because more
clinicians in our study reported that SMCA could be missed
(38% versus 24%) or could prolong the amount of time an
athlete would remain out of competition, it would seem that
SMCA is not gaining popularity as might be expected given the
abundance of published research on sport-related concus-
sion in recent years. Also, when asked a hypothetical question
(see Table 2) about a concussed athlete, more respondents in
our study (12.6% versus 1.2% in the previous study) indicated
they would allow an athlete to return to play who had a normal
clinical examination but an abnormal SMCA. Clinicians
should understand that SMCA gives reliable information about
a player’s status; an abnormal SMCA should caution the cli-
nician against allowing the athlete to return to competition. As
a follow-up to help explain our main findings, we conducted
post hoc analyses (chi-square tests of association), which re-
vealed no association between clinicians using SMCA and
their responses to our hypothetical questions.

Although neuropsychological assessment is recommended
for athletes both before participation and in guiding return to
play,24 our survey shows that relatively few ATCs use this
tool. Accessibility may be one barrier. Neuropsychological
testing is relatively new to the sports medicine community,
and ATCs often do not have the time or the resources to obtain
baseline tests and perform follow-up assessments after con-
cussion. Computerized neuropsychological testing is probably
the most convenient protocol, but testing multiple subjects at
one time requires multiple computers. If computer availability
is limited, only a few athletes can be evaluated in 15 to 35
minutes, which may not be practical for many institutions. In
the event of an injury, ATCs and physicians still need to in-
volve a neuropsychologist to assist in interpreting the results
before making a return-to-play decision. Paper-and-pencil test-
ing is more available but typically requires a trained person to
administer and interpret the test results. The problem of being
able to test only a limited number of athletes at one time also
restricts the use of paper-and-pencil testing.

We observed an association between an ATC’s experience
and the likelihood of using neuropsychological testing for
managing concussion. The more years of experience an ATC
reported, the more likely he or she was to use neuropsycholog-
ical testing. This finding could suggest that entry-level ath-
letic trainers are not being exposed to this tool in their athletic training experience. Experience in the field and exposure to neuropsychological testing through research may lead clinicians to incorporate this tool into their concussion management protocols.

The NATA position statement on concussion management recommends that all athletes, especially those playing sports with high concussion risks, be enrolled in a program involving cognitive and postural stability testing. These tests should be performed before the athlete engages in activity to establish a baseline for the individual and then after a concussion is diagnosed to identify any deficits that cannot be determined by self-reported symptoms.5 Our data indicate that only about 3% of those surveyed currently cover all 3 areas recommended by the NATA by using symptom checklists, neuropsychological testing, and the BESS for concussion assessment or return-to-play decisions. About 24% used at least 2 methods, and 80% used at least 1 method. The actual percentage is potentially higher because the only postural stability measure we inquired about was the BESS. Clinicians may use an alternate form of postural stability testing, such as forceplate measures. However, even if our survey included other forms of postural stability testing, we would not expect compliance with the NATA recommendations to improve.

Our study is restricted by the inherent limitations of survey research. We assume that the subjects answered the questions truthfully and honestly. We also assume that all subjects read and interpreted the questions in the same way. For example, although no return-to-play decision should be based on an individual tool, we did not provide specifics as to which tools were used in the hypothetical situations. Thus, this lack of information could have led to variable responses by the participants. Our response rate (34%) appeared low; however, we believe the response rate was actually higher than calculated because about 150 e-mail addresses returned mail server errors and were determined undeliverable. We estimated that another 10% of the e-mail addresses were no longer in use, because e-mail addresses tend to change frequently. We expect that our adjusted response rate would approach 40%, which is within the range (36% to 52%) for similarly administered Web-based surveys reviewed in the literature.25–27 Another potential limitation was that some of the surveys were not fully completed. We chose to include information on any question submitted, but this led to a variation in the number of responses for each survey item and to the number of responses we used in analysis.

In conclusion, our findings suggest that, in general, ATCs have made moderate progress in concussion assessment and management during the past 5 years. However, clinicians need to continue to incorporate and improve concussion protocols at their individual sites. Further research and education are important in evaluating and managing concussions. Clinicians should make a concerted effort to incorporate as many tools and methods as possible in order to obtain a complete picture of each individual’s concussion. This will allow clinicians to make well-informed return-to-play decisions and will ultimately allow for safer participation for athletes. Future prospective studies involving interventions should allow us to more clearly investigate the role of SMCA in making safe return-to-play decisions after concussion.

REFERENCES

